A nonequilibrium Monte Carlo approach to potential refinement in inverse problems
نویسندگان
چکیده
منابع مشابه
Monte Carlo Methods in Geophysical Inverse Problems
[1] Monte Carlo inversion techniques were first used by Earth scientists more than 30 years ago. Since that time they have been applied to a wide range of problems, from the inversion of free oscillation data for whole Earth seismic structure to studies at the meter-scale lengths encountered in exploration seismology. This paper traces the development and application of Monte Carlo methods for ...
متن کاملMonte Carlo analysis of inverse problems
Monte Carlo methods have become important in analysis of nonlinear inverse problems where no analytical expression for the forward relation between data and model parameters is available, and where linearization is unsuccessful. In such cases a direct mathematical treatment is impossible, but the forward relation materializes itself as an algorithm allowing data to be calculated for any given m...
متن کاملMonte Carlo sampling of solutions to inverse problems
Probabilistic formulation of inverse problems leads to the definition of a probability distribution in the model space. This probability distribution combines a priori information with new information obtained by measuring some observable parameters (data). As, in the general case, the theory linking data with model parameters is nonlinear, the a posteriori probability in the model space may no...
متن کاملA Bayesian approach to multiscale inverse problems using the sequential Monte Carlo method
A new Bayesian computational approach is developed to estimate spatially varying parameters. The sparse grid collocation method is adopted to parameterize the spatial field. Based on a hierarchically structured sparse grid, a multiscale representation of the spatial field is constructed. An adaptive refinement strategy is then used for computing the spatially varying parameter. A sequential Mon...
متن کاملA Quasi Monte Carlo Method for Large-Scale Inverse Problems
We consider large-scale linear inverse problems with a simulation-based algorithm that approximates the solution within a low-dimensional subspace. The algorithm uses Tikhonov regularization, regression, and low-dimensional linear algebra calculations and storage. For sampling efficiency, we implement importance sampling schemes, specially tailored to the structure of inverse problems. We empha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2003
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.1626635